Skip to main content

Posts

Showing posts from June, 2020

Axial Ratio Axial Ratio Circular polarization conversion (CP)

Axial Ratio Circular polarization conversion (CP)  Axial Ratio Axial Ratio Circular polarization conversion (CP) of the proposed Metasurface is further established by the axial ratio (AR) of the reflected wave,                                          𝐴𝑅 = ( |𝑅𝑦𝑦| 2 +|𝑅𝑥𝑦| 2 +√𝑎 |𝑅𝑦𝑦| 2 +|𝑅𝑥𝑦| 2 −√𝑎 ) 0.5  Where                          a = (|Ryy| 4 + |Rxy| 4 + 2|Ryy| 2 |Rxy| 2 cos(2ΔØyx)                                                                   and ∆∅𝐲𝐱 = ∅𝐲𝐲 − ∅𝐱𝐲  The reflection coefficient of the design surface is shown in Figure. The co-polarized and cross-polarized reflected waves have the same magnitude at 9.6 GHz and 17 GHz is 0.7. The surface behaves at these points as a CP which converts the linear EM wave into a circular EM wave. The numerical value of the axial ratio is shown in Figure. At 9.6 GHz and 17 GHz, the axial ratio value is lower than the 3dB dotted black line which shows that the design surface has the ability of CPC, to convert 9.6

An Angularly Stable Tri-band Reflective Cross-polarization Conversion Anisotropic Metamaterial

An Angularly Stable Tri-band Reflective Cross-polarization  Conversion Anisotropic Metamaterial A tri-band microwave cross-polarization conversion (CPC) metasurface is designed and simulated. The metasurface consists of a split-ring-resonator (SRRs) with two splits placed within perpendicular sides of the SRR and designed on an FR4 dielectric substrate backed by a metallic ground plane. An efficient CPC, both for normal as well as for oblique incidence, is achieved. This multi-band polarization conversion results from multiple plasmonic resonances occurring at three neighboring frequencies. Owing to sub-wavelength unit cell size, thin dielectric substrate, and optimized structure of the SRR, the response of the metasurface is independent of the incidence angle of the incoming wave which makes it a potential candidate for many practical applications. introduction Control and manipulation of the polarization state of electromagnetic waves have always been of p